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We study the problem of directed polymers (DP) on a square lattice. The 
distribution of disorder e is assumed to be independent but non-Gaussian. We 
show that for distributions with a power-law tail P(e)~ 1/l~l 1§ where # > 2, 
so that the mean and variance are well defined, the scaling exponent v of the DP 
model depends on ~t in a continuous fashion. 
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The directed polymer  problem (1~ (DP)  is currently a subject of active 
research. It  is related to various other interesting problems, such as the 
disorder-driven Burgers equation,  (2~ domain  structures of r andom spin 
systems, (3/ and surface growth. (4~ F rom the theoretical point  of view the 
D P  model  is one of the simplest models with quenched disorder. It is 
analytically tractable, at least on Cayley trees (s~ and other special lattices. (6) 
One hopes that  everything should be obtainable in 1 + 1 dimensions. The 
model  is yet rich enough to share many  characteristics with the more  
complex r andom systems, such as spin glasses. Often the D P  model  is 
taken as a testing ground  for new ideas. For  instance, recently (7'8~ it has 
been pointed out  that  in spite of the fact that  the replica symmetry  is 
weakly broken,  the replica-symmetric scaling behavior  is not  affected. The 
stability of  the D P  ground  states has also been studied (9) and it is found 
that under  infinitesimal change of the r andom environment  the D P  ground 
states can have appreciable variations. 

In the present work we are concerned with another  (in)stability 
problem relevant to the D P  model. Let us consider a disordered system in 
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which the energy distribution on each lattice bond (or site) has a 
well-defined mean and variance, but with some of the higher moments 
diverging. How does this non-Gaussian distribution influence the scaling 
behavior? 

The model can be defined on a square lattice as follows: 

Z(x, t) = Y' exp --flEw (1) 
w 

where x and t can be called the space and time variables, W denotes an 
oriented walk in the t direction, the sum is over all such walks which con- 
nect the origin (0, 0) to (x, t), Ew is the sum of the energy e on the lattice 
bonds of the walk W, and/~ is the inverse of temperature. 

We perform numerical simulations using the transfer matrix technique, 
and limit ourselves to the case of zero temperature (/~ --* oo). This amounts 
to finding the most dominating walk which can be called the ground state 
in the above path sum (1). For  a given random sample we will find a best 
path of length t starting from the origin which typically deviates in the 
transverse direction, with respect to the geometrical center x = 0, a distance 
xc. After averaging over random samples it is expected to be a scaling 
function of t with an exponent v, x C ~ t v. It is generally believed that zero- 
temperature scaling behavior extends also to a finite low-temperature region. 
For the (1 + 1)-dimensional DP problem with Gaussian independent disor- 
der, the scaling exponent is known to be v--2/3 exactly over the entire 
temperature region and there is no phase transition in the sense that the 
specific heat is a smooth function (1~ of temperature. 

We assume that disorder is independently on each lattice bond, 
according to the following power-law distribution density: 

1 
P ( e ) ~ i l ,  e,~+----------~,, lel ~> 1; P(e)=O, I~1 < 1 (2) 

We consider # >2,  so that there is a well-defined mean (~ )  (zero in the 
symmetrical case) and variance (e 2 ) = O(1 ). For/~ < 2, (2) is equivalent to 
the Levy distribution where the second moment is infinite; that problem is 
interesting in itself, but we will not discuss it here. 

The distribution (2) has a so-called long tail; traditionally, not much 
attention has been paid to these "weak" tails in disorder. There is the 
general feeling that as long as the variance of microscopic disorder is finite, 
the scaling behavior of physical observables on macroscopic scales would 
not be affected by the higher moments of disorder. Take the random walk 
problem as an example: suppose that a free walker at each step makes a 
jump of a distance Ax distributed according to P(Ax) of (2); the end-to-end 
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distance x after t (t large) steps will scale a s  x 2 ~ t. Normally the most rele- 
vant physical quantities are expressed through the second moments of the 
macroscopic observables, which depend only on the first two moments of 
microscopic disorder. This fact can be actually summed up in a theorem 
which extends the above assertion for the random walk model to all 
Markovian processes. (11} We have not said anything about the higher 
moments  of the macroscopic observables which are surely related to higher 
moments  of disorder, but who would care? 

Since the DP  problem does not describe a Markovian process, things 
can be completely different from the above random walk example. The 
above tails contain singularity large values, so that the optimal paths or 
ground state will try to include them on their way. This fact may cause 
larger fluctuations than the ones observed in the presence of Gaussian or 
truncated disorder. 

To check the above hypothesis, we implement the zero-temperature 
transfer matrix simulation on a 1000 by 1000 square lattice. The above 
distribution (2) can be realized on a computer, and the energy e on lattice 
bonds takes value from 

+_ranf i/, (3) 

where "ranf" is a system suppl ied random number generator which 
provides the uniform distribution between zero and one. Since we are 
interested in the tail, particular attention has to be paid to the quality of 
random number  generators. 

We plot the transverse fluctuation xc in Fig. 1 for three different values 
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Fig. 1. The transverse fluctuation xc (vertical axis) against time t for three different values 
of #: 2.2, 3, and 4. There are three sets of corresponding data; from top to bottom, they show 
distinct scaling behaviors. 
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of #, where the data were typically averaged over 1000 samples. The data 
scale quite well and we are able to estimate the scaling exponent xc ~ t": 
v=0.90_+0.03 for #=2 .2 ,  v=0.81 +0.01 for # = 3 ,  and v = 0 . 7 2 + 0 . 0 1  for 
# = 4. In Fig. 2 we plot the exponent v against # for more values of #, 
where we also report two cases # = 1.9, 2.0 when the second moment  is 
divergent. When # ~ 2 we have noticed larger fluctuations in the data and 
it takes a longer time to reach the asymptotic regions. This is rather similar 
to the situation when a traditional critical point is approached. We believe 
that when #--+2 +, v-+ 1; and for # < 2  (Levy distribution) the polymer 
exponent v becomes saturated at 1. However, we cannot be very sure of 
this, since our algorithm involves only the nearest neighbors; the possibility 
of having v > 1 is excluded. As a consequence, the interesting case of the 
Levy distribution cannot be studied in the present fashion. There appears 
to be an upper critical value of #c ~ 6 above which the scaling exponent 
returns to its much celebrated Gaussian value v = 2/3. We have checked 
this for # -- 7, 10, and 30. We attribute this finding to the fact that there the 
tails are too weak to spoil the traditional Gaussian scaling behaviors. The 
existence of the critical #c implies a qualitative distinction between the 
low-# and high-# regions. 

There is another exponent co, which is the energy fluctuation, m In 
our simulations we have not yet obtained satisfactory estimates of this 
exponent. However, we expect the exponent identity 

v = (1 +(o) /2 (4) 
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Fig. 2. The scal ing exponen t  v aga ins t  #, for var ious  /z. The errors  are from our  subjective 

assesment.  
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to hold also for disorder with tails, since it can be shown (12) that Eq. (4) 
is rigorously true for any disorder without temporal correlations. This is 
due to the Galilean invariance. There is another exact relation which is 
valid only for Gaussian independent disorder: the fluctuation-dissipation 
theorem, (3) which asserts that the exponent v is 2/3 on the basis of 
invariant distribution measures. It is clear that this theorem is violated in 
the presence of independent disorder with tails. It remains to be shown if 
alternatives to the above theorem exist so as to give analytical predictions 
of the exponent v in terms of/~. 

We believe that the same type of question might be asked for other 
random systems, for instance, spin glasses and Ising models with random 
fields or bonds. The disorder tail studied in this work may also change the 
universality classes there. We wonder if and how the replica symmetry for 
the (1 + 1)-dimensional DP problem ~7'8) maybe broken when disorder has 
long tails. These tails may also influence some dynamical processes, such as 
invasion percolation, which shares many features with growth models. 
Further work along these lines is needed. 

We thank P. Bak, F. Guerra, T. Hwa and A. Maritan for discussions. 
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